Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Asıl Yazarlar: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE Digital Library
2020
|
Benzer Materyaller
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
Yazar:: Xu, Z, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
Yazar:: Xu, Z, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
Yazar:: Chen, C, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
Yazar:: Chen, C, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
Yazar:: Xu, Z, ve diğerleri
Baskı/Yayın Bilgisi: (2018)