Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Main Authors: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Springer
2024
|
פריטים דומים
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
מאת: Mingtao Xia, et al.
יצא לאור: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
מאת: Li, Huiyuan, et al.
יצא לאור: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
מאת: Batubara, Johan
יצא לאור: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
מאת: Zhao Li-Fang, et al.
יצא לאור: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
מאת: Tang, Tao, et al.
יצא לאור: (2020)