Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
主要な著者: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2024
|
類似資料
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
著者:: Mingtao Xia, 等
出版事項: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
著者:: Li, Huiyuan, 等
出版事項: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
著者:: Batubara, Johan
出版事項: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
著者:: Zhao Li-Fang, 等
出版事項: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
著者:: Tang, Tao, 等
出版事項: (2020)