Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Hoofdauteurs: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Springer
2024
|
Gelijkaardige items
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
door: Mingtao Xia, et al.
Gepubliceerd in: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
door: Li, Huiyuan, et al.
Gepubliceerd in: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
door: Batubara, Johan
Gepubliceerd in: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
door: Zhao Li-Fang, et al.
Gepubliceerd in: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
door: Tang, Tao, et al.
Gepubliceerd in: (2020)