Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Главные авторы: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer
2024
|
Схожие документы
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
по: Mingtao Xia, и др.
Опубликовано: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
по: Li, Huiyuan, и др.
Опубликовано: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
по: Batubara, Johan
Опубликовано: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
по: Zhao Li-Fang, и др.
Опубликовано: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
по: Tang, Tao, и др.
Опубликовано: (2020)