Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Автори: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer
2024
|
Схожі ресурси
Схожі ресурси
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
за авторством: Mingtao Xia, та інші
Опубліковано: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
за авторством: Li, Huiyuan, та інші
Опубліковано: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
за авторством: Batubara, Johan
Опубліковано: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
за авторством: Zhao Li-Fang, та інші
Опубліковано: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
за авторством: Tang, Tao, та інші
Опубліковано: (2020)