Long gaps in sieved sets

For each prime p, let Ip⊂Z/pZ denote a collection of residue classes modulo p such that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x, the sifted set {n∈Z:n(modp)∉Ipforallp≤x} contains gaps of size x(logx)δ depends only on the densitiy of primes for...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ford, K, Konyagin, S, Maynard, J, Pomerance, C, Tao, T
التنسيق: Journal article
اللغة:English
منشور في: European Mathematical Society 2020