Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
<p>In this thesis we consider the role of multimodality in decision making and coordination problems in machine learning. We propose the use of a series of multimodal probabilistic methods, using extensions of (finite) mixture models to tackle challenges in time series forecasting, efficient u...
第一著者: | Zand, J |
---|---|
その他の著者: | Roberts, S |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2021
|
主題: |
類似資料
-
Tractable probabilistic models for causal learning and reasoning
著者:: Wang, B
出版事項: (2023) -
Machine learning : a probabilistic perspective /
著者:: Kevin P. Murphy
出版事項: (2012) -
Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
著者:: Peng Liu, 等
出版事項: (2024-12-01) -
Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-to-Gate Assignment Problem
著者:: Micha Zoutendijk, 等
出版事項: (2021-05-01) -
Probabilistic Predictions with Federated Learning
著者:: Adam Thor Thorgeirsson, 等
出版事項: (2020-12-01)