Robustness of 3D deep learning in an adversarial setting
Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D environments; however, relatively little is known about...
Hoofdauteurs: | Wicker, M, Kwiatkowska, M |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
IEEE
2020
|
Gelijkaardige items
-
Adversarial robustness certification for Bayesian neural networks
door: Wicker, M, et al.
Gepubliceerd in: (2024) -
Bayesian inference with certifiable adversarial robustness
door: Wicker, M, et al.
Gepubliceerd in: (2021) -
Adversarial robustness of Bayesian neural networks
door: Wicker, M
Gepubliceerd in: (2021) -
Adversarial robustness of deep reinforcement learning
door: Qu, Xinghua
Gepubliceerd in: (2022) -
Adversarial robustness guarantees for Gaussian processes
door: Patane, A, et al.
Gepubliceerd in: (2022)