Bipartite graph reasoning GANs for person pose and facial image synthesis
We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks: person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specific...
主要な著者: | Tang, H, Shao, L, Torr, PHS, Sebe, N |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2022
|
類似資料
-
Bipartite graph reasoning GANs for person image generation
著者:: Tang, H, 等
出版事項: (2021) -
XingGAN for person image generation
著者:: Tang, H, 等
出版事項: (2020) -
AttentionGAN: unpaired image-to-image translation using attention-guided generative adversarial networks.
著者:: Tang, H, 等
出版事項: (2021) -
Local and blobal GANs with semantic-aware upsampling for image generation
著者:: Tang, H, 等
出版事項: (2022) -
Multi-channel attention selection GANs for guided image-to-image translation
著者:: Tang, H, 等
出版事項: (2022)