Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models.
We propose a hierarchical infinite mixture model approach to address two issues in connectivity-based parcellations: (i) choosing the number of clusters, and (ii) combining data from different subjects. In a Bayesian setting, we model voxel-wise anatomical connectivity profiles as an infinite mixtur...
मुख्य लेखकों: | Jbabdi, S, Woolrich, M, Behrens, T |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
2009
|
समान संसाधन
-
Tractography segmentation using a hierarchical Dirichlet processes mixture model
द्वारा: Wang, Xiaogang, और अन्य
प्रकाशित: (2020) -
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.
द्वारा: Blumensath, T, और अन्य
प्रकाशित: (2013) -
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
द्वारा: Kezi Yu, और अन्य
प्रकाशित: (2017-01-01) -
Hierarchical Dirichlet processes
द्वारा: Teh, Y, और अन्य
प्रकाशित: (2006) -
Hierarchical Dirichlet Process Based Gamma Mixture Modeling for Terahertz Band Wireless Communication Channels
द्वारा: Erhan Karakoca, और अन्य
प्रकाशित: (2022-01-01)