SEM-GAT: explainable semantic pose estimation using learned graph attention

This paper proposes a Graph Neural Network (GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates. Semantic and morphological features of the environment serve as key reference points for registration, enabling accura...

全面介绍

书目详细资料
Main Authors: Panagiotaki, E, De Martini, D, Pramatarov, G, Gadd, M, Kunze, L
格式: Conference item
语言:English
出版: IEEE 2024