SEM-GAT: explainable semantic pose estimation using learned graph attention
This paper proposes a Graph Neural Network (GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates. Semantic and morphological features of the environment serve as key reference points for registration, enabling accura...
Päätekijät: | Panagiotaki, E, De Martini, D, Pramatarov, G, Gadd, M, Kunze, L |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
IEEE
2024
|
Samankaltaisia teoksia
-
BoxGraph: semantic place recognition and pose estimation from 3D LiDAR
Tekijä: Pramatarov, G, et al.
Julkaistu: (2021) -
Semantic interpretation and validation of graph attention-based explanations for GNN models
Tekijä: Panagiotaki, E, et al.
Julkaistu: (2024) -
That's my point: compact object-centric LiDAR pose estimation for large-scale outdoor localisation
Tekijä: Pramatarov, G, et al.
Julkaistu: (2024) -
CollabGAT: Collaborative Perception Using Graph Attention Network
Tekijä: Ahmed N. Ahmed, et al.
Julkaistu: (2024-01-01) -
PU-GAT: Point cloud upsampling with graph attention network
Tekijä: Xuan Deng, et al.
Julkaistu: (2023-12-01)