SEM-GAT: explainable semantic pose estimation using learned graph attention

This paper proposes a Graph Neural Network (GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates. Semantic and morphological features of the environment serve as key reference points for registration, enabling accura...

詳細記述

書誌詳細
主要な著者: Panagiotaki, E, De Martini, D, Pramatarov, G, Gadd, M, Kunze, L
フォーマット: Conference item
言語:English
出版事項: IEEE 2024