Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. METHODS: To elucidat...

Full description

Bibliographic Details
Main Authors: Wang, M, Roussos, P, McKenzie, A, Zhou, X, Kajiwara, Y, Brennand, K, De Luca, G, Crary, J, Casaccia, P, Buxbaum, J, Ehrlich, M, Gandy, S, Goate, A, Katsel, P, Schadt, E, Haroutunian, V, Zhang, B
Format: Journal article
Language:English
Published: BioMed Central 2016
_version_ 1797053151528878080
author Wang, M
Roussos, P
McKenzie, A
Zhou, X
Kajiwara, Y
Brennand, K
De Luca, G
Crary, J
Casaccia, P
Buxbaum, J
Ehrlich, M
Gandy, S
Goate, A
Katsel, P
Schadt, E
Haroutunian, V
Zhang, B
author_facet Wang, M
Roussos, P
McKenzie, A
Zhou, X
Kajiwara, Y
Brennand, K
De Luca, G
Crary, J
Casaccia, P
Buxbaum, J
Ehrlich, M
Gandy, S
Goate, A
Katsel, P
Schadt, E
Haroutunian, V
Zhang, B
author_sort Wang, M
collection OXFORD
description BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. METHODS: To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. RESULTS: The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. CONCLUSIONS: This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.
first_indexed 2024-03-06T18:39:59Z
format Journal article
id oxford-uuid:0c8abeb5-c1ea-48a8-b150-f2ecbe710491
institution University of Oxford
language English
last_indexed 2024-03-06T18:39:59Z
publishDate 2016
publisher BioMed Central
record_format dspace
spelling oxford-uuid:0c8abeb5-c1ea-48a8-b150-f2ecbe7104912022-03-26T09:35:40ZIntegrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0c8abeb5-c1ea-48a8-b150-f2ecbe710491EnglishSymplectic Elements at OxfordBioMed Central2016Wang, MRoussos, PMcKenzie, AZhou, XKajiwara, YBrennand, KDe Luca, GCrary, JCasaccia, PBuxbaum, JEhrlich, MGandy, SGoate, AKatsel, PSchadt, EHaroutunian, VZhang, BBACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. METHODS: To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. RESULTS: The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. CONCLUSIONS: This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.
spellingShingle Wang, M
Roussos, P
McKenzie, A
Zhou, X
Kajiwara, Y
Brennand, K
De Luca, G
Crary, J
Casaccia, P
Buxbaum, J
Ehrlich, M
Gandy, S
Goate, A
Katsel, P
Schadt, E
Haroutunian, V
Zhang, B
Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title_full Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title_fullStr Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title_full_unstemmed Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title_short Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
title_sort integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to alzheimer s disease
work_keys_str_mv AT wangm integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT roussosp integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT mckenziea integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT zhoux integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT kajiwaray integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT brennandk integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT delucag integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT craryj integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT casacciap integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT buxbaumj integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT ehrlichm integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT gandys integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT goatea integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT katselp integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT schadte integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT haroutunianv integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease
AT zhangb integrativenetworkanalysisofnineteenbrainregionsidentifiesmolecularsignaturesandnetworksunderlyingselectiveregionalvulnerabilitytoalzheimersdisease