Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments
Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and f...
Príomhchruthaitheoirí: | , , , , , , , |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
Cell Press
2017
|
_version_ | 1826258964094910464 |
---|---|
author | Baker, L Sinnige, T Schellenberger, P De Keyzer, J Siebert, C Driessen, A Baldus, M Grünewald, K |
author_facet | Baker, L Sinnige, T Schellenberger, P De Keyzer, J Siebert, C Driessen, A Baldus, M Grünewald, K |
author_sort | Baker, L |
collection | OXFORD |
description | Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted systems. |
first_indexed | 2024-03-06T18:42:22Z |
format | Journal article |
id | oxford-uuid:0d5344b8-4fde-4ff2-b7a7-3d81f5e584dc |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T18:42:22Z |
publishDate | 2017 |
publisher | Cell Press |
record_format | dspace |
spelling | oxford-uuid:0d5344b8-4fde-4ff2-b7a7-3d81f5e584dc2022-03-26T09:39:58ZCombined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environmentsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0d5344b8-4fde-4ff2-b7a7-3d81f5e584dcEnglishSymplectic Elements at OxfordCell Press2017Baker, LSinnige, TSchellenberger, PDe Keyzer, JSiebert, CDriessen, ABaldus, MGrünewald, KMembrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted systems. |
spellingShingle | Baker, L Sinnige, T Schellenberger, P De Keyzer, J Siebert, C Driessen, A Baldus, M Grünewald, K Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title | Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title_full | Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title_fullStr | Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title_full_unstemmed | Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title_short | Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
title_sort | combined 1h detected solid state nmr spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments |
work_keys_str_mv | AT bakerl combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT sinniget combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT schellenbergerp combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT dekeyzerj combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT siebertc combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT driessena combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT baldusm combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments AT grunewaldk combined1hdetectedsolidstatenmrspectroscopyandelectroncryotomographytostudymembraneproteinsacrossresolutionsinnativeenvironments |