Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures
Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer Nature
2021
|
_version_ | 1811139783789903872 |
---|---|
author | Teng, YHF Quah, HS Suteja, L Dias, JML Mupo, A Bashford-Rogers, RJM Vassiliou, GS Chua, MLK Tan, DSW Lim, DWT Iyer, NG |
author_facet | Teng, YHF Quah, HS Suteja, L Dias, JML Mupo, A Bashford-Rogers, RJM Vassiliou, GS Chua, MLK Tan, DSW Lim, DWT Iyer, NG |
author_sort | Teng, YHF |
collection | OXFORD |
description | Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies. |
first_indexed | 2024-09-25T04:11:35Z |
format | Journal article |
id | oxford-uuid:0fec0068-a64a-4b4f-bf5c-9bfea5b87d26 |
institution | University of Oxford |
language | English |
last_indexed | 2024-09-25T04:11:35Z |
publishDate | 2021 |
publisher | Springer Nature |
record_format | dspace |
spelling | oxford-uuid:0fec0068-a64a-4b4f-bf5c-9bfea5b87d262024-07-05T09:46:20ZAnalysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signaturesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0fec0068-a64a-4b4f-bf5c-9bfea5b87d26EnglishSymplectic ElementsSpringer Nature2021Teng, YHFQuah, HSSuteja, LDias, JMLMupo, ABashford-Rogers, RJMVassiliou, GSChua, MLKTan, DSWLim, DWTIyer, NGDespite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies. |
spellingShingle | Teng, YHF Quah, HS Suteja, L Dias, JML Mupo, A Bashford-Rogers, RJM Vassiliou, GS Chua, MLK Tan, DSW Lim, DWT Iyer, NG Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title | Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title_full | Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title_fullStr | Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title_full_unstemmed | Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title_short | Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures |
title_sort | analysis of t cell receptor clonotypes in tumor microenvironment identifies shared cancer type specific signatures |
work_keys_str_mv | AT tengyhf analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT quahhs analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT sutejal analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT diasjml analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT mupoa analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT bashfordrogersrjm analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT vassiliougs analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT chuamlk analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT tandsw analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT limdwt analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures AT iyerng analysisoftcellreceptorclonotypesintumormicroenvironmentidentifiessharedcancertypespecificsignatures |