Poisson intensity estimation with reproducing kernels
Despite the fundamental nature of the inhomogeneous Poisson process in the theory and application of stochastic processes, and its attractive generalizations (e.g. Cox process), few tractable nonparametric modeling approaches of intensity functions exist, especially in high dimensional settings. In...
Autori principali: | Flaxman, S, Teh, Y, Sejdinovic, D |
---|---|
Natura: | Conference item |
Pubblicazione: |
AI & Statistics
2017
|
Documenti analoghi
-
Poisson intensity estimation with reproducing kernels
di: Flaxman, S, et al.
Pubblicazione: (2017) -
Bayesian learning of kernel embeddings
di: Filippi, S, et al.
Pubblicazione: (2016) -
Bayesian kernel two-sample testing
di: Zhang, Q, et al.
Pubblicazione: (2022) -
Causal inference via Kernel deviance measures
di: Mitrovic, J, et al.
Pubblicazione: (2018) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
di: Mitrovic, J, et al.
Pubblicazione: (2016)