Poisson intensity estimation with reproducing kernels
Despite the fundamental nature of the inhomogeneous Poisson process in the theory and application of stochastic processes, and its attractive generalizations (e.g. Cox process), few tractable nonparametric modeling approaches of intensity functions exist, especially in high dimensional settings. In...
主要な著者: | Flaxman, S, Teh, Y, Sejdinovic, D |
---|---|
フォーマット: | Conference item |
出版事項: |
AI & Statistics
2017
|
類似資料
-
Poisson intensity estimation with reproducing kernels
著者:: Flaxman, S, 等
出版事項: (2017) -
Bayesian learning of kernel embeddings
著者:: Filippi, S, 等
出版事項: (2016) -
Bayesian kernel two-sample testing
著者:: Zhang, Q, 等
出版事項: (2022) -
Causal inference via Kernel deviance measures
著者:: Mitrovic, J, 等
出版事項: (2018) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
著者:: Mitrovic, J, 等
出版事項: (2016)