Machine learning methods for the analysis of MEG data
<p>Neuroimaging data is often high-dimensional and difficult to interpret. Methods have been developed which can be applied to datasets to make them more malleable and comprehensible to researchers. This process is critical for improving our understanding of the nature of the brain. The develo...
Egile nagusia: | Roberts, EJ |
---|---|
Beste egile batzuk: | Woolrich, M |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
2024
|
Antzeko izenburuak
-
Reducing MEG interference using machine learning
nork: Sammi Hamdan, et al.
Argitaratua: (2023-06-01) -
MEG or No MEG, That is the Question
nork: Chaturbhuj Rathore
Argitaratua: (2024-10-01) -
MEG: An introduction to methods
nork: Hansen, P, et al.
Argitaratua: (2010) -
Bayesian analysis of phase data in EEG and MEG
nork: Sydney Dimmock, et al.
Argitaratua: (2023-09-01) -
MEG and EEG data analysis with MNE-Python
nork: Alexandre eGramfort, et al.
Argitaratua: (2013-12-01)