Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
المؤلفون الرئيسيون: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2019
|
مواد مشابهة
-
A model where the least trimmed squares estimator is maximum likelihood
حسب: Berenguer-Rico, V, وآخرون
منشور في: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
حسب: Berenguer Rico, V, وآخرون
منشور في: (2025) -
A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling
حسب: Raudhah Zulkifli, وآخرون
منشور في: (2022-01-01) -
Symmetrically trimmed least squares estimation for Tobit models
حسب: Powell, James
منشور في: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
حسب: Yijun Zuo
منشور في: (2024-11-01)