Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
主要な著者: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2019
|
類似資料
-
A model where the least trimmed squares estimator is maximum likelihood
著者:: Berenguer-Rico, V, 等
出版事項: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
著者:: Berenguer Rico, V, 等
出版事項: (2025) -
A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling
著者:: Raudhah Zulkifli, 等
出版事項: (2022-01-01) -
Symmetrically trimmed least squares estimation for Tobit models
著者:: Powell, James
出版事項: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
著者:: Yijun Zuo
出版事項: (2024-11-01)