Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Главные авторы: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2019
|
Схожие документы
-
A model where the least trimmed squares estimator is maximum likelihood
по: Berenguer-Rico, V, и др.
Опубликовано: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
по: Berenguer Rico, V, и др.
Опубликовано: (2025) -
A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling
по: Raudhah Zulkifli, и др.
Опубликовано: (2022-01-01) -
Symmetrically trimmed least squares estimation for Tobit models
по: Powell, James
Опубликовано: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
по: Yijun Zuo
Опубликовано: (2024-11-01)