On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Hlavní autoři: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2005
|
Podobné jednotky
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
Autor: Andrieu, C, a další
Vydáno: (2012) -
Parameter estimation in general state-space models using particle methods
Autor: Doucet, A, a další
Vydáno: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
Autor: Andrieu, C, a další
Vydáno: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
Autor: Poyiadjis, G, a další
Vydáno: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
Autor: Tadic, V, a další
Vydáno: (2005)