On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Główni autorzy: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
2005
|
Podobne zapisy
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
od: Andrieu, C, i wsp.
Wydane: (2012) -
Parameter estimation in general state-space models using particle methods
od: Doucet, A, i wsp.
Wydane: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
od: Andrieu, C, i wsp.
Wydane: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
od: Poyiadjis, G, i wsp.
Wydane: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
od: Tadic, V, i wsp.
Wydane: (2005)