On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Autors principals: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2005
|
Ítems similars
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
per: Andrieu, C, et al.
Publicat: (2012) -
Parameter estimation in general state-space models using particle methods
per: Doucet, A, et al.
Publicat: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
per: Andrieu, C, et al.
Publicat: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
per: Poyiadjis, G, et al.
Publicat: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
per: Tadic, V, et al.
Publicat: (2005)