On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Hauptverfasser: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
2005
|
Ähnliche Einträge
Ähnliche Einträge
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
von: Andrieu, C, et al.
Veröffentlicht: (2012) -
Parameter estimation in general state-space models using particle methods
von: Doucet, A, et al.
Veröffentlicht: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
von: Andrieu, C, et al.
Veröffentlicht: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
von: Poyiadjis, G, et al.
Veröffentlicht: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
von: Tadic, V, et al.
Veröffentlicht: (2005)