On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
主要な著者: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2005
|
類似資料
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
著者:: Andrieu, C, 等
出版事項: (2012) -
Parameter estimation in general state-space models using particle methods
著者:: Doucet, A, 等
出版事項: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
著者:: Andrieu, C, 等
出版事項: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
著者:: Poyiadjis, G, 等
出版事項: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
著者:: Tadic, V, 等
出版事項: (2005)