Numerical simulation of angle dependent magnetoresistances oscillations in α-(BEDT-TTF)2KHg(SCN)4

We present a numerical simulation of angle dependent magnetoresistances oscillations (AMROs) in α-(BEDT-TTF)2KHg(SCN)4. The nesting vector of the density wave and the magnetic breakdowngap in the low-temperature, low-magnetic-field state (LTLF) are constrained by simulations of quasi-one-dimensional...

ver descrição completa

Detalhes bibliográficos
Principais autores: Nam, M, Ardavan, A, Blundell, S, Singleton, J
Formato: Journal article
Idioma:English
Publicado em: 2001
Descrição
Resumo:We present a numerical simulation of angle dependent magnetoresistances oscillations (AMROs) in α-(BEDT-TTF)2KHg(SCN)4. The nesting vector of the density wave and the magnetic breakdowngap in the low-temperature, low-magnetic-field state (LTLF) are constrained by simulations of quasi-one-dimensional (Q1D) AMRO. Quasi-two-dimensional (Q2D) AMRO simulations for the high-temperature, high-magnetic-field state (HTHF) allow the precise derivation of an ellipticity of the Q2D Fermi surface. Simulations of the field dependent AMRO demonstrate the gradual evolution of the FS from LTLF to HTHF states toward the kink transition at 23 T.