Hypergraph convolution and hypergraph attention
Recently, graph neural networks have attracted great attention and achieved prominent performance in various research fields. Most of those algorithms have assumed pairwise relationships of objects of interest. However, in many real applications, the relationships between objects are in higher-order...
主要な著者: | Bai, S, Zhang, F, Torr, PHS |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elseveir
2020
|
類似資料
-
Link Prediction in Knowledge Hypergraph Combining Attention and Convolution Network
著者:: PANG Jun, XU Hao, QIN Hongchao, LIN Xiaoli, LIU Xiaoqi, WANG Guoren
出版事項: (2023-11-01) -
Decomposing hypergraphs into k-colorable hypergraphs
著者:: Gholamreza Omidi, 等
出版事項: (2014-06-01) -
An analytic approach to sparse hypergraphs: hypergraph removal
著者:: Henry Towsner
出版事項: (2018-01-01) -
Hypergraph and Uncertain Hypergraph Representation Learning Theory and Methods
著者:: Liyan Zhang, 等
出版事項: (2022-06-01) -
Hypergraph-Mlp: learning on hypergraphs without message passing
著者:: Tang, B, 等
出版事項: (2024)