Hypergraph convolution and hypergraph attention
Recently, graph neural networks have attracted great attention and achieved prominent performance in various research fields. Most of those algorithms have assumed pairwise relationships of objects of interest. However, in many real applications, the relationships between objects are in higher-order...
Главные авторы: | Bai, S, Zhang, F, Torr, PHS |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Elseveir
2020
|
Схожие документы
-
Link Prediction in Knowledge Hypergraph Combining Attention and Convolution Network
по: PANG Jun, XU Hao, QIN Hongchao, LIN Xiaoli, LIU Xiaoqi, WANG Guoren
Опубликовано: (2023-11-01) -
Decomposing hypergraphs into k-colorable hypergraphs
по: Gholamreza Omidi, и др.
Опубликовано: (2014-06-01) -
An analytic approach to sparse hypergraphs: hypergraph removal
по: Henry Towsner
Опубликовано: (2018-01-01) -
Hypergraph and Uncertain Hypergraph Representation Learning Theory and Methods
по: Liyan Zhang, и др.
Опубликовано: (2022-06-01) -
Hypergraph-Mlp: learning on hypergraphs without message passing
по: Tang, B, и др.
Опубликовано: (2024)