Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
المؤلفون الرئيسيون: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
التنسيق: | Internet publication |
اللغة: | English |
منشور في: |
arXiv
2023
|
مواد مشابهة
-
Neural refinement for absolute pose regression with feature synthesis
حسب: Bhalgat, Y, وآخرون
منشور في: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
حسب: Chen, S, وآخرون
منشور في: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
حسب: Chen, S, وآخرون
منشور في: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
حسب: Prisacariu, V, وآخرون
منشور في: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
حسب: Bian, W, وآخرون
منشور في: (2022)