2 '-Substituted 2-amino-3-methylpyridine ribonucleosides in triplex-forming oligonucleotides: triplex stability is determined by chemical environment

A new synthetic route to the phosphoramidite monomer of 2-amino-3-methyl-5-(2′-O-methyl-β-d-ribofuranosyl)pyridine (Me-MAP) and its 2′-O-methoxyethyl analogue (MOE-MAP) has been established using d-ribose and 2-amino-3-methyl-5-bromopyridine as precursors. Ultraviolet melting and DNase I footprintin...

Full description

Bibliographic Details
Main Authors: Lou, C, Xiao, Q, Tailor, R, Ben Gaied, N, Gale, N, Light, M, Fox, K, Brown, T
Format: Journal article
Language:English
Published: 2011
Description
Summary:A new synthetic route to the phosphoramidite monomer of 2-amino-3-methyl-5-(2′-O-methyl-β-d-ribofuranosyl)pyridine (Me-MAP) and its 2′-O-methoxyethyl analogue (MOE-MAP) has been established using d-ribose and 2-amino-3-methyl-5-bromopyridine as precursors. Ultraviolet melting and DNase I footprinting studies indicate that the triplex stabilizing properties of 2′-modified MAPs are determined by the conformation of the entire oligonucleotide backbone. Me-MAP confers a higher triplex stability than 2′-deoxycytidine whereas triplex stabilization by MOE-MAP is similar to that of dC. Incorporation of Me-MAP or MOE-MAP into oligonucleotides renders them dramatically more resistant to degradation by serum nucleases than incorporation of 2-amino-3-methyl-5-(2′-deoxy-β-d-ribofuranosyl) pyridine (dMAP) or dC. © The Royal Society of Chemistry 2011.