Learning object categories from Google’s image search

Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...

全面介紹

書目詳細資料
Main Authors: Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A
格式: Conference item
語言:English
出版: IEEE 2005
實物特徵
總結:Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Internet. We develop a new model, TSI-pLSA, which extends pLSA (as applied to visual words) to include spatial information in a translation and scale invariant manner. Our approach can handle the high intra-class variability and large proportion of unrelated images returned by search engines. We evaluate tire models on standard test sets, showing performance competitive with existing methods trained on hand prepared datasets.