Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
المؤلفون الرئيسيون: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
IEEE
2005
|
مواد مشابهة
-
Learning object categories from internet image searches
حسب: Fergus, R, وآخرون
منشور في: (2010) -
A visual category filter for Google Images
حسب: Fergus, R, وآخرون
منشور في: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
حسب: Fergus, R, وآخرون
منشور في: (2005) -
A sparse object category model for efficient learning and complete recognition
حسب: Fergus, R, وآخرون
منشور في: (2006) -
Object class recognition by unsupervised scale-invariant learning
حسب: Fergus, R, وآخرون
منشور في: (2003)