Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diiso...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Wiley
2020
|
_version_ | 1797058168410341376 |
---|---|
author | Heilmann, A Hicks, J Vasko, P Goicoechea, JM Aldridge, S |
author_facet | Heilmann, A Hicks, J Vasko, P Goicoechea, JM Aldridge, S |
author_sort | Heilmann, A |
collection | OXFORD |
description | Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al-N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al-N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate leads to C-C coupling and C≡O bond cleavage. Thermodynamically, this is driven, at least in part, by Al-O bond formation. Mechanistically, a combination of quantum chemical and experimental observations suggests that the reaction proceeds via exchange of the NR and O substituents through intermediates featuring an aluminium-bound isocyanate fragment. |
first_indexed | 2024-03-06T19:46:45Z |
format | Journal article |
id | oxford-uuid:2290c536-23b6-49ef-9222-bcb67966b985 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T19:46:45Z |
publishDate | 2020 |
publisher | Wiley |
record_format | dspace |
spelling | oxford-uuid:2290c536-23b6-49ef-9222-bcb67966b9852022-03-26T11:39:26ZCarbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:2290c536-23b6-49ef-9222-bcb67966b985EnglishSymplectic ElementsWiley2020Heilmann, AHicks, JVasko, PGoicoechea, JMAldridge, SAnionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al-N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al-N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate leads to C-C coupling and C≡O bond cleavage. Thermodynamically, this is driven, at least in part, by Al-O bond formation. Mechanistically, a combination of quantum chemical and experimental observations suggests that the reaction proceeds via exchange of the NR and O substituents through intermediates featuring an aluminium-bound isocyanate fragment. |
spellingShingle | Heilmann, A Hicks, J Vasko, P Goicoechea, JM Aldridge, S Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title | Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title_full | Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title_fullStr | Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title_full_unstemmed | Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title_short | Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation |
title_sort | carbon monoxide activation by a molecular aluminium imide c o bond cleavage and c c bond formation |
work_keys_str_mv | AT heilmanna carbonmonoxideactivationbyamolecularaluminiumimidecobondcleavageandccbondformation AT hicksj carbonmonoxideactivationbyamolecularaluminiumimidecobondcleavageandccbondformation AT vaskop carbonmonoxideactivationbyamolecularaluminiumimidecobondcleavageandccbondformation AT goicoecheajm carbonmonoxideactivationbyamolecularaluminiumimidecobondcleavageandccbondformation AT aldridges carbonmonoxideactivationbyamolecularaluminiumimidecobondcleavageandccbondformation |