GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
المؤلفون الرئيسيون: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2022
|
مواد مشابهة
-
Ranking and synchronization from pairwise measurements via SVD
حسب: d'Aspremont, A, وآخرون
منشور في: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
حسب: Negahban, Sahand, وآخرون
منشور في: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
حسب: Cucuringu, M
منشور في: (2016) -
Ranking Alternatives by Pairwise Comparisons Matrix and Priority Vector
حسب: Ramík Jaroslav
منشور في: (2017-12-01) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
حسب: He, Y, وآخرون
منشور في: (2022)