GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
Үндсэн зохиолчид: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Journal of Machine Learning Research
2022
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Ranking and synchronization from pairwise measurements via SVD
-н: d'Aspremont, A, зэрэг
Хэвлэсэн: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
-н: Negahban, Sahand, зэрэг
Хэвлэсэн: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
-н: Cucuringu, M
Хэвлэсэн: (2016) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
-н: He, Y, зэрэг
Хэвлэсэн: (2022) -
Pairwise diffusion of preference rankings in social networks
-н: Brill, M, зэрэг
Хэвлэсэн: (2016)