Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
主要な著者: | Kumar, MP, Torr, PHS |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Association for Computing Machinery
2008
|
類似資料
-
An analysis of convex relaxations for MAP estimation
著者:: Kumar, MP, 等
出版事項: (2008) -
Analyzing convex relaxations for map estimation
著者:: Kumar, MP, 等
出版事項: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
著者:: Pawan Kumar, M, 等
出版事項: (2009) -
Solving Markov random fields using second order cone programming relaxations
著者:: Kumar, MP, 等
出版事項: (2006) -
Improved moves for truncated convex models
著者:: Kumar, MP, 等
出版事項: (2009)