Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Главные авторы: | Kumar, MP, Torr, PHS |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Association for Computing Machinery
2008
|
Схожие документы
-
An analysis of convex relaxations for MAP estimation
по: Kumar, MP, и др.
Опубликовано: (2008) -
Analyzing convex relaxations for map estimation
по: Kumar, MP, и др.
Опубликовано: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
по: Pawan Kumar, M, и др.
Опубликовано: (2009) -
Solving Markov random fields using second order cone programming relaxations
по: Kumar, MP, и др.
Опубликовано: (2006) -
Improved moves for truncated convex models
по: Kumar, MP, и др.
Опубликовано: (2009)