Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
主要な著者: | , |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Association for Computing Machinery
2008
|