Settings in social networks: A measurement model
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive structur...
Auteurs principaux: | Schweinberger, M, Snijders, T |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2003
|
Documents similaires
Maximum likelihood estimation for social network dynamics
par: Koskinen, J, et autres
Publié: (2010)
par: Koskinen, J, et autres
Publié: (2010)
Maximum Likelihood Estimation for Social Network Dynamics
par: Snijders, T, et autres
Publié: (2010)
par: Snijders, T, et autres
Publié: (2010)
Documents similaires
-
Maximum likelihood estimation for social network dynamics
par: Koskinen, J, et autres
Publié: (2010) -
Maximum Likelihood Estimation for Social Network Dynamics
par: Snijders, T, et autres
Publié: (2010) -
Maximum likelihood estimation for social network dynamics
par: Snijders, T, et autres
Publié: (2010) -
Markov models for digraph panel data: Monte Carlo-based derivative estimation
par: Schweinberger, M, et autres
Publié: (2007) -
Assessing and accounting for time heterogeneity in stochastic actor oriented models.
par: Lospinoso, J, et autres
Publié: (2011)