GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
Auteurs principaux: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
Format: | Journal article |
Publié: |
Oxford University Press
2016
|
Documents similaires
-
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
par: Almosallam, I, et autres
Publié: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
par: Gomes, Z, et autres
Publié: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
par: Almosallam, I, et autres
Publié: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
par: Hatfield, PW, et autres
Publié: (2020) -
Photometric redshift estimation using Gaussian processes
par: Bonfield, D, et autres
Publié: (2010)