GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
Asıl Yazarlar: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
Oxford University Press
2016
|
Benzer Materyaller
-
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
Yazar:: Almosallam, I, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
Yazar:: Gomes, Z, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
Yazar:: Almosallam, I, ve diğerleri
Baskı/Yayın Bilgisi: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
Yazar:: Hatfield, PW, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Photometric redshift estimation using Gaussian processes
Yazar:: Bonfield, D, ve diğerleri
Baskı/Yayın Bilgisi: (2010)