Packing, counting and covering Hamilton cycles in random directed graphs
A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this is that there is no general tool f...
Hauptverfasser: | Ferber, A, Kronenberg, G, Long, E |
---|---|
Format: | Journal article |
Veröffentlicht: |
Springer Verlag
2017
|
Ähnliche Einträge
-
Packing and counting arbitrary Hamilton cycles in random digraphs
von: Ferber, A, et al.
Veröffentlicht: (2018) -
Counting Hamilton decompositions of oriented graphs
von: Ferber, A, et al.
Veröffentlicht: (2017) -
Finding Hamilton cycles in random intersection graphs
von: Katarzyna Rybarczyk
Veröffentlicht: (2018-03-01) -
Packing trees of unbounded degrees in random graphs
von: Ferber, Asaf, et al.
Veröffentlicht: (2022) -
Edge Disjoint Hamilton Cycles in Knödel Graphs
von: Palanivel Subramania Nadar Paulraja, et al.
Veröffentlicht: (2016-07-01)