Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(K,N) spaces to CAT(0) spaces
We establish Lipschitz regularity of harmonic maps from RCD(K, N) metric measure spaces with lower Ricci curvature bounds and dimension upper bounds in synthetic sense with values into CAT(0) metric spaces with non-positive sectional curvature. Under the same assumptions, we obtain a Bochner-Eells-S...
主要な著者: | Mondino, A, Semola, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Johns Hopkins University Press
2023
|
類似資料
-
The equality case in Cheeger's and Buser's inequalities on RCD spaces
著者:: De Ponti, N, 等
出版事項: (2021) -
On the notion of Laplacian bounds on RCD spaces and applications
著者:: Gigli, N, 等
出版事項: (2023) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
著者:: Fiorani, F, 等
出版事項: (2023) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
著者:: Fiorani, F, 等
出版事項: (2025) -
Rigidity of the 1-Bakry–Émery inequality and sets of finite perimeter in RCD spaces
著者:: Ambrosio, L, 等
出版事項: (2019)