Sense-Assess-eXplain (SAX): building trust in autonomous vehicles in challenging real-world driving scenarios
This paper discusses ongoing work in demonstrating research in mobile autonomy in challenging driving scenarios. In our approach, we address fundamental technical issues to overcome critical barriers to assurance and regulation for largescale deployments of autonomous systems. To this end, we presen...
Hoofdauteurs: | Gadd, M, de Martini, D, Marchegiani, M, Newman, P, Kunze, L |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
IEEE
2021
|
Gelijkaardige items
-
Towards Safer Heuristics With Xplain
door: Karimi, Pantea, et al.
Gepubliceerd in: (2024) -
Improving Data Quality Control in the Xplain-DBMS
door: J A Bakker
Gepubliceerd in: (2012-02-01) -
Why not explain? effects of explanations on human perceptions of autonomous driving
door: Omeiza, D, et al.
Gepubliceerd in: (2021) -
Keep off the grass: permissible driving routes from radar with weak audio supervision
door: Williams, D, et al.
Gepubliceerd in: (2020) -
Assessing and explaining collision risk in dynamic environments for autonomous driving safety
door: Nahata, R, et al.
Gepubliceerd in: (2021)