Sense-Assess-eXplain (SAX): building trust in autonomous vehicles in challenging real-world driving scenarios
This paper discusses ongoing work in demonstrating research in mobile autonomy in challenging driving scenarios. In our approach, we address fundamental technical issues to overcome critical barriers to assurance and regulation for largescale deployments of autonomous systems. To this end, we presen...
Principais autores: | Gadd, M, de Martini, D, Marchegiani, M, Newman, P, Kunze, L |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2021
|
Registros relacionados
-
Towards Safer Heuristics With Xplain
por: Karimi, Pantea, et al.
Publicado em: (2024) -
Improving Data Quality Control in the Xplain-DBMS
por: J A Bakker
Publicado em: (2012-02-01) -
Why not explain? effects of explanations on human perceptions of autonomous driving
por: Omeiza, D, et al.
Publicado em: (2021) -
Keep off the grass: permissible driving routes from radar with weak audio supervision
por: Williams, D, et al.
Publicado em: (2020) -
Assessing and explaining collision risk in dynamic environments for autonomous driving safety
por: Nahata, R, et al.
Publicado em: (2021)