nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
We describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal resolution. Simultaneously, traditional image...
Hauptverfasser: | Treder, K, Huang, C, Bell, C, Slater, T, Schuster, M, Ozkaya, D, Kim, J, Kirkland, A |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer Nature
2023
|
Ähnliche Einträge
Ähnliche Einträge
-
nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
von: Kevin P. Treder, et al.
Veröffentlicht: (2023-02-01) -
Automated analysis of heterogeneous catalyst materials using deep learning
von: Treder, KP
Veröffentlicht: (2022) -
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
von: Bell, CG, et al.
Veröffentlicht: (2022) -
Automated Design of the Deep Neural Network Pipeline
von: Mia Gerber, et al.
Veröffentlicht: (2022-11-01) -
Pipeline system automation and control /
von: 171133 Yoon, Mike S., et al.
Veröffentlicht: (2007)