Rational points of varieties with ample cotangent bundle over function fields of positive characteristic
Let $K$ be the function field of a smooth curve over an algebraically closed field $k$. Let $X$ be a scheme, which is smooth and projective over $K$. Suppose that the cotangent bundle $\Omega_{X/K}$ is ample. Let $R:={\rm Zar}(X)(K)\cap X)$ be the Zariski closure of the set of all $K$-rational point...
主要な著者: | , |
---|---|
フォーマット: | Journal article |
出版事項: |
Springer Berlin Heidelberg
2017
|